Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows

نویسندگان

  • Francisco Pereira
  • Morteza Gharib
چکیده

Defocusing digital particle image velocimetry (DDPIV) is the natural extension of planar PIV techniques to the third spatial dimension. In this paper we give details of the defocusing optical concept by which scalar and vector information can be retrieved within large volumes. The optical model and computational procedures are presented with the specific purpose of mapping the number density, the size distribution, the associated local void fraction and the velocity of bubbles or particles in two-phase flows. Every particle or bubble is characterized in terms of size and of spatial coordinates, used to compute a true three-component velocity field by spatial three-dimensional cross-correlation. The spatial resolution and uncertainty limits are established through numerical simulations. The performance of the DDPIV technique is established in terms of number density and void fraction. Finally, the velocity evaluation methodology, using the spatial cross-correlation technique, is described and discussed in terms of velocity accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method for three-dimensional particle sizing in two-phase flows

A method is devised for true three-dimensional (3D) particle sizing in two-phase systems. Based on a ray-optics approximation of the Mie scattering theory for spherical particles, and under given assumptions, the principle is applicable to intensity data from scatterers within arbitrary interrogation volumes. It requires knowledge of the particle 3D location and intensity, and of the spatial di...

متن کامل

Heat Transfer Enhancement of a Flat Plate Boundary Layer Distributed by a Square Cylinder: Particle Image Velocimetry and Temperature-Sensitive Paint Measurements and Proper Orthogonal Decomposition Analysis

The current empirical study was conducted to investigate the wall neighborhood impact on the two-dimensional flow structure and heat transfer enhancement behind a square cylinder. The low- velocity open-circle wind tunnel was used to carry out the study tests considering the cylinder diameter (D)-based Reynolds number (ReD) of 5130. The selected items to compare were different gap he...

متن کامل

In vitro validation of flow measurement with phase contrast MRI at 3 tesla using stereoscopic particle image velocimetry and stereoscopic particle image velocimetry-based computational fluid dynamics.

PURPOSE To validate conventional phase-contrast MRI (PC-MRI) measurements of steady and pulsatile flows through stenotic phantoms with various degrees of narrowing at Reynolds numbers mimicking flows in the human iliac artery using stereoscopic particle image velocimetry (SPIV) as gold standard. MATERIALS AND METHODS A series of detailed experiments are reported for validation of MR measureme...

متن کامل

A High Spatial Method to Determine Three-Dimensional Velocity Gradient Tensor using Micro Particle Image Velocimetry

Micro Particle Image Velocimetry (μPIV) is a non-invasive flow field measurement technique, which is becoming the method of choice for the investigation of micro-flows. Measurements of flows which occur within the human body represent one of the most important applications of μPIV. A three-component two-dimensional scanning micro-Particle Image Velocimetry (μPIV) technique is presented in this ...

متن کامل

Performance prediction of point-based 3D measurement systems

Point-based three-dimensional volumetric measurement systems are defined as multi-view vision systems which reconstruct a three-dimensional scene by first identifying key points on the views and then performing the reconstruction. Examples of these are defocusing digital particle image velocimetry (DDPIV) (Pereira et al 2000 Exp. Fluids 29 S78–84) and 3D particle tracking velocimetry (3DPTV) (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002